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A B S T R A C T

Efficiency assessment of water and sewerage companies (WaSCs) has attracted considerable attention
both for water company managers and water regulators. Within the methodological approaches that can
be applied to estimate efficiency scores, data envelopment analysis (DEA) is the most widely applied
technique. In spite of the positive features of DEA, it presents a major drawback which is its deterministic
nature. In other words, conventional DEA models do not account for uncertainty in the data. To overcome
this limitation, we assess, for the first time, the efficiency of a sample of Chilean WaSCs by using a DEA
model with statistical tolerance in the data. Hence, 81 efficiency scores are estimated for each WaSC
rather than a single score as with conventional DEA models. The results illustrate that outputs exhibit
larger uncertainty than inputs. Moreover, WaSCs efficiency scores change significantly under the best-
case and worst-case scenarios. The ranking of the WaSCs allows for the identification of which of them
has the highest performance based on their efficiency scores. This information is essential to enhance
efficiency and innovation in the water industry. Moreover, the introduction of uncertainty in the
efficiency assessment allows for the prediction and ranking of future performance of WaSCs.
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1. Introduction

Over the last few years, efficiency assessment in water industry
has attracted considerable attention by researchers, water
companies and regulators (Romano and Guerrini, 2011). Improve-
ment of the efficiency of water companies is desirable allowing for
cost reduction, increase profits of water companies, and/or
decreased prices paid by consumers for water and sewerage
services (Molinos-Senante et al., 2015a). Hence, improvement of
efficiency is a major policy objective of water companies and
regulators (Carvalho and Marques, 2011).

Most studies that assess the efficiency of water utilities employ
the non-parametric data envelopment analysis (DEA) (e.g., García-
Sánchez, 2006; Berg, 2010; Molinos-Senante et al., 2014). The
advantages of DEA are that: (i) it does not require assumptions
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about the functional relationship between inputs and outputs; (ii)
it allows for the estimation of the efficiency of productive decision
making units (DMUs) which use multiple inputs to produce
multiple outputs; and (iii) the weights to aggregate inputs and
outputs are generated endogenously which minimizes the
subjectivity of the assessment (Guerrini et al., 2013).

In spite of these advantages, DEA is not exempt of limitations.
The deterministic nature of DEA is a major drawback, as statistical
inferences cannot be drawn from conventional DEA models
(Ananda, 2014) and efficiency scores are highly sensitive to
atypical observations and data errors (De Witte and Marques,
2010). To take into account uncertainty in the efficiency assess-
ment, several methodological approaches have been developed (Li,
1998; Simar and Wilson 1998, 2007; Cazals et al., 2002; Daraio and
Simar, 2005; Bonilla et al., 2004).

In spite of the importance of considering uncertainty in
efficiency assessment in the framework of water utilities, the
information gap in the literature is evident. To the best of our
knowledge, only De Witte and Marques (2010); Ananda (2014) and
See (2015) applied bootstrapping techniques to evaluate the
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efficiency of water companies. Sala-Garrido et al. (2012) used DEA
with tolerances model to assess the efficiency of a sample of
Spanish wastewater treatment plants accounting for uncertainty.
In view of the few empirical applications which deal with the
uncertainty issue in the performance measurement of water
companies, there is a clear need for advancing in this research
stream.

Efficiency scores are often used to identify which units use
resources most efficiently. However, to make informed decisions
the evaluated DMUs should be ranked in terms of efficiency.
According to DEA methodology, several DMUs can be identified as
efficient and therefore, they cannot be ranked directly by using
their efficiency scores (Esmaeilzadeh and Hadi-Vencheh, 2015).
Hence, several methodological approaches have been proposed to
deal with the issue of ranking DMUs (Adler et al., 2002) such as
cross-efficiency (Sexton et al., 1986), benchmarking approaches
(Torgersen et al., 1996), multivariate statistical tools (Friedman and
Sinuany-Stern, 1997), super-efficiency (Andersen and Petersen,
1993), and efficiency indicators (Boscá et al., 2011). While each one
of these methodological approaches has advantages and short-
comings, the system of indicators proposed by Boscá et al. (2011)
were developed specifically to rank DMUs when the efficiency
assessment accounts for uncertainty in the inputs and/or outputs.

Against this background, the objectives of this paper are
threefold. The first one is to identify which variables (inputs and/or
outputs) are the most sensitive to changes, i.e., which have the
largest potential uncertainty. The second objective is to evaluate
the efficiency of a sample of water and sewerage companies
(WaSCs) accounting for uncertainty. The empirical application
focuses on the 23 main Chilean WaSCs for 2014. The third objective
of this paper is to rank the evaluated WaSCs to support the decision
process of water regulators.

This paper contributes to the current strand of literature in the
field of water companies’ performance measurement by comput-
ing the efficiency scores of WaSCs introducing statistical tolerances
in the data and by ranking the WaSCs based on their efficiency
scores. To the authors’ knowledge, this is the first study that applies
DEA with a tolerances model to assess the efficiency of a sample of
WaSCs accounting for uncertainty. Chile presents an interesting
case within the context of this research since it has long been a
pioneer in the privatization of water and sewerage services. Chile
has been by far the most successful case of water and sewerage
services privatization after the privatization of the English and
Welsh water companies in the 1980s (Lee and Floris, 2003).
Moreover, because Latin America could be described as being
situated at a medium level in terms of coverage and quality of
water and sewerage services, water managers and authorities in
other Latin American countries can learn some lessons from the
Chilean case (Molinos-Senante et al., 2015a, 2015b, 2015c;
Molinos-Senante and Sala-Garrido, 2015). On the other hand,
the Chilean tariff law introduced the concept of an efficient water
and sewerage operator model, so as to incentive providers to be
technically and economically efficient. Additionally, privatization
of WaSCs in Chile have led to lower rates in the long term since its
rate setting system has allowed for the transfer of efficiencies to
final prices. Thus, it is of interest to assess the effectiveness of these
regulatory reforms on WaSCs’ efficiency, so as to extract lessons
and implications for its potential replication.

From a policy perspective, this study is of great interest both for
WaSCs’ managers and water regulators. On the one hand, the
inclusion of variability in the data allows WaSCs that should be on
alert to be identified, since small changes in the inputs and/or
outputs will cause a significant reduction in their efficiency. On the
other hand, the ranking of the WaSCs based on efficiency scores is
essential for water regulators to promote competition between the
WaSCs reducing monopoly problems. This issue is essential to
ensure the sustainability of WaSCs over time and to provide
improved water and sewerage services to citizens.

2. Methodology

2.1. Efficiency assessment

DEA is a non-parametric method based on linear programming
that allows for the construction of the efficient production frontier
based on the inputs and outputs of the DMUs (Charnes et al., 1978).
The relative efficiency for each DMU is calculated by comparing its
inputs and outputs in relation to the rest of the units (Molinos-
Senante et al., 2014). In other words, DEA produces measurements
of the relative inefficiency of each DMU when compared to what
amounts to an industry’s best practice output/input ratio (Cooper
et al., 2004). Further details on DEA methodology are provided by
Cooper et al. (2007) and Zhu (2015).

Traditional DEA models can be input-oriented or output-
oriented. Accordingly, when a DMU reaches the maximum output
given a set of inputs (output-oriented DEA) or uses a minimum of
inputs to produce a given set of outputs (input-oriented DEA) it is
placed on the production frontier and therefore, it is efficient
(Cooper et al., 2004). The selection of the orientation depends on
the objective of the efficiency evaluation. Following past evidence
(Guerrini et al., 2011; Mahmoudi et al., 2012; Carvalho and
Marques, 2014), in this study an input orientation was adopted
since the aim of the WaSCs is to provide water and sewerage
services minimizing the use of inputs.

In DEA framework, the production frontier can be estimated by
considering constant returns to scale (CRS) and variable returns to
scale (VRS) technologies. The CRS approach assumes that all DMUs
operate at an optimum level. On the other hand, the VRS approach
compares DMUs with a similar scale. Molinos-Senante et al.
(2015a) investigated whether Chilean WaSCs operate under CRS or
VRS technology. They concluded that the technology of the WaSCs
in Chile is overall CRS at a confidence interval of 95%. Hence, in this
paper we assumed that the DMUs evaluated have CRS technology.

Given k ¼ 1; 2 . . . ; n DMUs (WaSCs in our case study), teach one
using a vector of M inputs xk ¼ x1k; x2k; . . . ; xMkð Þ to produce a vector
of S outputs yk ¼ y1k; y2k; . . . ; ySkð Þ, according to the model DEA-
CRS, the measure of efficiency u is obtained by solving for each
DMU k0 the following linear programming problem:

Minu
s:t:Xn

k¼1
lkxik � uxik0 1 � i � MXn

k¼1
lkyrk � yrk0 1 � r � S
lk � 0 1 � k � n

ð1Þ

where lk is a vector of intensity. The measure of efficiency u is
bounded between 0 and 1. It is considered that a DMU (WaSC in our
case study) is efficient if u ¼ 1, while it is inefficient if 0 � u < 1.
The difference between the score u and the value of 1 can be
considered to be the potential reduction in inputs to obtain the
same set of outputs.

Eq. (1) illustrates the traditional DEA model developed by
Charnes et al. (1978) with input orientation and CRS technology
assumption. In essence, the efficient input–output levels in DEA
are those which are not dominated by the others in the reference
set. The applied analysis presupposes data determinism and, so,
any mistake or inaccuracy in the measure could alter the efficiency
index results, a common limitation of efficiency analyses based on
DEA.

To overcome this limitation, we applied a DEA model with
statistical tolerance developed by Bonilla et al. (2004) which has
been applied by other authors such as Boscá et al. (2009, 2011);
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Medal (2010); Sala-Garrido et al. (2012); Perez and Gomez (2014).
Methodologically, the linear programming model Eq. (1) is solved
where each input and output is altered by the inclusion of a
tolerance level. The tolerance levels are calculated based on the
differences between the maximum and the minimum and the
mean for each DMU. Thus, following Bonilla et al. (2004) we
focused on the most favorable case scenario and least favorable
case scenario for each DMU. The most favorable case (optimistic
scenario) for WaSC k0 results from decreases and increase of inputs
and outputs, respectively, while the rest of the WaSCs present the
inverse behavior in their variables according to tolerance levels
defined. On the other hand, the least favorable case (pessimistic
scenario) for the WaSC k0 occurs when inputs increase and outputs
decrease, while for the rest of WaSCs, inputs decrease and outputs
increase. The maximum and minimum values of the confidence
interval of the new efficiency scores that solve Eq. (1) under the
best and worst possible case scenarios allows for the analysis of the
consistency of the efficiency score values; the smaller the interval
the greater the consistency in the score values.

The application of this methodology can be summarized in the
following steps:

Step 1: Choice of the methodological approach to determine the
tolerance values of the inputs and outputs.

The definition of the tolerance values is essential for the DEA
model accounting for uncertainty. There are two main alternative
approaches to define the tolerances of the data such as the use of
generic and random variations and the use of historical series of
inputs and outputs. While both approaches are meaningful, Medal
and Sala (2009) through the analysis of contingency tables of the
distribution of scores for each DMU, concluded that the selection of
tolerances based on individual historical variations in the inputs
and outputs leads to better results than the use of random
variations. According to Boscá et al. (2011) the tolerances defined
for each of the outputs and inputs may be symmetrical or not
respect to the original value.

Taking into account the historical variations in the data and
main characteristics of the WaSCs evaluated in this study, it was
considered more appropriate to define asymmetric tolerances for
the inputs and outputs of the WaSCs.1

Step 2: Estimation of tolerance values for each input and output.
Tolerance values should be defined for each input and output.

They are non-negative scalar values and express the changes from
left and right of the values of the inputs and outputs as follows:

Tolerance for inputs: aik and a�ik
Tolerance for outputs: brk and b�rk
According to the tolerance values defined, the values of the

inputs and outputs are within the following range (Sala-Garrido
et al., 2012):

xik 2 ½xik � aik; xik þ a�ik�
yrk 2 ½yrk � brk; yrk þ b�rk� ð2Þ

Step 3: Selection of the DEA combinations to be solved.
According to Eq. (2), there is a breadth number of possible

combinations of inputs and outputs. Hence, it is not feasible to
calculate efficiency scores for all of them. In order to simplify the
analysis and obtain representative, understandable and useful
results, we focused our assessment on analyzing the original and
extreme values of each input and output, following Medal (2010).
Hence, to evaluate the efficiency of the WaSC k0, the inputs and
outputs take the following values:

Inputs of the WaSC : xik0 ð1 � aik0 Þ; xik0 ; xik0 ð1 þ a �ik0 Þ
Outputs of the WaSC : yrk0ð1 � brk0 Þ; yrk0 ; yrk0ð1 þ b �rk0 Þ
Inputs of the WaSC k 6¼ k0 : xikð1 � aikÞ; xik; xikð1 þ a�ikÞ
Outputs of the WaSC k 6¼ k0 : yrkð1 � brkÞ; yrk; yrkð1 þ b�rkÞ

ð3Þ 1 Methodologies for the calculation of symmetric and asymmetric tolerance level
for each input and output are described as supplementary information.
According to Eq. (3), there are 34 (81) DEA combinations that
should be solved for each WaSC k0. They are the result of three
situations: (i) favorable; (ii) unfavorable, and (iii) original, with
four possible inputs and outputs: (i) inputs for the analyzed WaSC;
(ii) outputs for the analyzed WaSC; (iii) inputs for the remaining
WaSCs; and (iv) outputs for the remaining WaSCs.

Step 4: Estimation of the efficiency scores for each WaSC taking
into account the tolerance values.

This step involves the replacement of the original values by the
modified values according to the estimated level of tolerance in the
DEA model (Eq. (1)). As a result, for each WaSC k0, two extreme
scenarios are defined, namely: (i) optimistic or best-case scenario;
and (ii) pessimistic or worst-case scenario.

Optimistic scenario : xik ¼ f xik0 � aik0
xik þ a�ik

yrk ¼ f yrk0 þ b �rk0
yrk � brk

ð4Þ

Pessimistic scenario : xik ¼ f xik0 þ a �ik0
xik � aik

yrk ¼ f yrk0 � brk0
yrk þ b�rk

ð5Þ

As is shown in Eq. (4) the optimistic scenario for the WaSC k0
implies that inputs decrease and outputs increase for this WaSC,
while the rest of the WaSCs present the inverse behavior in their
variables according to tolerance levels defined. On the other hand,
the pessimistic scenario for the WaSC k0 defined in Eq. (5)
determines that for this WaSC, inputs increase and outputs
decrease, while the for the rest of WaSCs, inputs decrease and
outputs increase. Thus, under the optimistic and pessimistic
scenarios, the maximum and minimum efficiency scores are
obtained for each WaSC evaluated. Hence, the DEA model with
tolerances allows us to narrow the uncertainty in efficiency
assessment.

2.2. Ranking of water companies

One of the objectives of efficiency assessment is benchmarking
the DMUs evaluated, i.e. ranking DMUs according to their
efficiency scores. As was reported in the introduction, since
several WaSCs can be identified as efficient, they cannot be ranked
directly. As Boscá et al. (2011) illustrated, ranking DMUs requires
the development of efficiency indicators based on the scores
previously quantified. Accordingly, we followed the methodologi-
cal approach developed by Boscá et al. (2011) to rank WaSCs
according to its efficiency scores.

The two efficiency indicators for the k0-th order WaSC are
defined as follows (Boscá et al., 2011):

R1
k0 ¼ ek0

tk0
ð6Þ

R2
k0 ¼

Sk0 � ek0
tk0 � ek0

iftk0 6¼ ek0

0iftk0 ¼ ek0

8<
: ð7Þ

where ek0 is the number of times that WaSC k0 has an efficiency
score equal to 1, i.e., the number of times that the WaSC k0 is
efficient; tk0 is equal to 81 since it is the number of DEA
combinations solved for each WaSC; and Sk0 is the sum of the 81
efficiency scores of WaSC k0.

R1
k0 is bounded between 0 and 1 and reports the proportion of

times that WaSC k0 is efficient. A value of 0 means that in none of
the 81 scenarios evaluated the WaSC k0 is efficient. By contrast, a
R1
k0 equal to 1 means that the WaSC has been identified as efficient

in all evaluated cases. Hence, the higher the value of R1
k0 ; the higher
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the propensity that the WaSC is efficient (Sala-Garrido et al., 2012).

The indicator R2
k0 is also bounded between 0 and 1 and it is used to

rank WaSCs when two have the same value for the first
R1
k0 indicator,

3. Sample description

In the last twenty-five years, the Chilean water industry has
implemented significant reforms (Molinos-Senante et al., 2015a,
2015b, 2015c; Molinos-Senante and Sala-Garrido, 2015). First, in
1990 the national water regulator, namely “Superintendencia de
Servicios Sanitarios” (SISS), was created. Second, by the end of 1998
the privatization of the water industry was started. Thus, from
1998 to 2000, a significant part of the capital of six of the main
Chilean WaSCs was privatized (SISS, 2014). Third, from 2001 to
2004 the rights for the exploitation of some WaSCs were
transferred to private companies. As a result of the privatization
of the Chilean water industry in 2014, 95.7% of customers were
supplied by private WaSCs (SISS, 2014).

According to SISS (2014), in 2014 there were 53 water
companies operating in the 15 Chilean regions providing water
and sewerage services to 16 million people. The sample studied in
this research consists of 23 of the main Chilean WaSCs which
provide water and sewerage services to approximately 98% of the
total number of urban customers (SISS, 2014). Statistical informa-
tion is extracted from the management reports of water and
sewerage services published by SISS for the year 2014.

The considered objective of a WaSCs is to perform a productive
process that supplies drinking water and collects and treats
wastewater according to the required quality criteria by legislation
at the lowest possible cost. Accordingly and following past
evidence, three inputs were considered in this study: (i) operating
costs ðx1Þ which are the water and sewerage industry’s total
operating expenditure (except labor) (See, 2015), such as
expenditures related to operation, maintenance and administra-
tion of the urban water cycle; (ii) labor ðx2Þ expressed as the
numbers of employees (Mbuvi et al., 2012), including both direct
and external workers who carry out tasks for the WaSCs but do not
belong to the companies (Molinos-Senante et al., 2015a) and; (iii)
network length ðx3Þ (Coelli and Walding, 2006). Selecting a
variable which represents capital expenditure is complicated by
valuation disparities. To overcome this problem, previous studies
(Ananda, 2014; See, 2015) used the length of the delivery and
sewerage networks as proxy for capital input.

Regarding outputs, the most widely used output variable is
distributed water volume (De Witte and Marques, 2010; Guerrini
et al., 2013). However, the water companies evaluated in this study
not only supply drinking water but also provide sewerage and
wastewater treatment services. Moreover, it should be highlighted
that an important aspect of the urban water cycle is the quality of
the services provided. To improve water quality, WaSCs may incur
Table 1
Sample description.

Inputs Outputs

Operating costs
(103 CLP)

Labor (Nr
workers)

Network
length (Km)

Water
distributed
(103m3)

Custom
treatme

Average 27,832,382 590 3138 47,979 688,434
SD 38,983,020 765 4941 93,080 1,314,39
Minimum 988,941 32 7 653 6,820 

Maximum 162,769,722 3032 21,481 442,991 6,152,00

Source: Own elaboration from Chilean Superintendencia de Servicios Sanitatios (SISS) 20
in considerable expenditures (Ananda, 2014). Hence, quality issues
cannot be ignored in the assessment of the efficiency of WaSCs
(Molinos-Senante et al., 2015b). Following Saal et al. (2007) and
Molinos-Senante et al. (2015c) two quality-adjusted outputs were
used. The first one is the water distributed (expressed in thousands
of cubic meters) adjusted by its quality (y1). The second output is
the number of customers with access to wastewater treatment
services adjusted by the quality of the treated water (y2). Both
indicators of quality (drinking water and wastewater treatment)
are provided by the SISS for each 0 � 1½ �WaSC and have a range
between

A value of 1 means that the water company has fulfilled all legal
requirements regarding quality issues. The construction of the
quality-adjusted outputs is as follows:

y1 ¼ VDW � QDW ð8Þ

y2 ¼ CWW � QTW ð9Þ
where y1 is the quality-adjusted drinking water output; VDW is the
volume of drinking water put into the delivery network; QDW is
the quality indicator of the drinking water; y2 is the quality-
adjusted wastewater treatment output; CWW is the number of
customers with wastewater treatment services and; QTW is the
quality indicator of the treated water.

As is illustrated in Eqs. (8) and (9), a value lower than 1 for QDW
and QTW penalizes water companies since it involves a reduction
in the generation of outputs. Table 1 provides a snapshot of the
statistical data used to compute the efficiency scores of Chilean
WaSCs.

A limitation in any DEA model is the number of DMUs analyzed
in relation to the number of inputs and outputs. Hence, whether a
large set of inputs and outputs is considered, relative efficiency
discrimination across units will tend to become blurred, as there
will exist some dimension in accordance to which DMU will be
defined as efficient (Tupper and Resende, 2004). To avoid this
problem, “Cooper’s rule” must be taken into account in the
selection of inputs and outputs. Accordingly, the number of units to
be evaluated must be larger than or equal to max m � s; 3 m þ sð Þf g
where m is the number of inputs and s is the number of outputs
involved in the DEA study (Cooper et al., 2007). In this study, 23
WaSCs were analyzed while the number of inputs was three and
the number of outputs was two. Hence, “Cooper’s rule” was
obeyed.

In our research, both inputs and outputs are subject to
uncertainty. For example, while operating costs are strictly
controlled by WaSCs, it is very difficult to obtain accurate
information about them since each WaSCs provides the data to
the water regulator only to set water tariffs. Furthermore,
sometimes it is complicated to have precise knowledge of the
network length due to new urban developments. The situation is
ers with wastewater
nt service

Indicator of drinking
water quality

Indicator of wastewater
treatment quality

 0.954 0.990
0 0.073 0.014

0.744 0.950
0 1.000 1.000

14 report.



Table 2
Right and left tolerances for inputs and outputs in% respect to original data.

Inputs (%) Outputs (%)

Operating
costs

Labor Network
length

Quality-adjusted drinking water
output

Quality-adjusted wastewater treatment
output

Right tolerances in% respect to original
data

Average 5.2 3.3 1.5 15.7 20.8

SD 3.4 3.0 2.2 21.0 27.1
Minimum 0.8 0.4 0.1 0.4 0.5
Maximum 13.3 11.5 9.6 75.7 96.2

Left tolerances in% respect to original
data

Average 0.1 �1.4 0.1 �6.1 �7.3

SD 1.8 2.1 0.3 10.5 9.8
Minimum �4.5 �8.1 �0.8 �24.7 �24.8
Maximum 2.5 1.9 0.6 3�0 1.4
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more complex with respect to outputs since they involve quality
issues. First, water meters are inaccurate in measuring the volume
of water put into the delivery network. For example, Arregui et al.
(2015) reported errors up to 32% in conventional water meters.
Second, both quality indicators are based on the determination of
pollutants in the water. While the precision of analytical methods
has considerably improved in recent years, occasional analytical
mistakes may produce data that are not representative.

4. Results and discussion

4.1. Estimation of the tolerances for outputs and inputs

To estimate asymmetrical gaps for each of the outputs and
inputs of each WaSC we used data of the last five years, i.e., from
2010 to 2014. Since it was considered more suitable to estimate
asymmetric tolerances, we computed right tolerances which
involve an improvement of outputs and a worsening of inputs
and left tolerances which implies a worsening of outputs and an
improvement of inputs (Table 2). Tolerances are interpreted as
follows: the larger value of the tolerance, the larger sensitivity of
the input or output to changes. In other words, tolerances reflect
the potential data uncertainty.2

Table 2 illustrates that the average value of tolerance for
outputs is larger than for inputs. This means that the greatest
uncertainty in the evaluation of the performance of WaSCs is
associated to the volume of water supplied and wastewater treated
considering quality issues. Thus the outputs involved in this study
are not directly controllable by the WaSCs but depend mainly on
customers demand. By contrast, inputs exhibit less uncertainty
than outputs since they are directly managed by WaSCs. With
respect to the outputs, the highest variability is observed in the
number of customers with access to wastewater treatment. This is
because in recent years Chilean WaSCs and the water regulator
have made significant efforts to increase the coverage of
wastewater treatment services. Regarding inputs, the network
length is the input with the lowest variability since in 2010 urban
water coverage was close to universal that year.

At the water company level, both right and left tolerances are
highly variable especially for outputs as is supported by the
standard deviation values presented in Table 2. As is illustrated,
right tolerances are significantly more variable than left tolerances.
For example, for the number of people with access to wastewater
treatment services, focusing on right tolerances, the minimum
value was 0.5% (WaSC 19), while the maximum value was 96.2%
(WaSC 11). This variability in the tolerance values for this variable
2 Tolerance values for each water and sewerage company are shown as
Supplementary information.
reflects the different efforts that WaSCs have made to improve the
coverage and quality of wastewater treatment services in recent
years. It is also important to note that both outputs are weighted by
the quality of the service provided by the WaSC. Hence, the
tolerance values are influenced not only by quantity but also by
quality issues.

4.2. Efficiency scores of water and sewerage companies

Once the tolerances for inputs and outputs for the 23 WaSCs
were calculated, the next step in our assessment was to estimate
efficiency scores. To improve the understanding and interpretation
of the results, we focused on four scenarios: (i) original efficiency
scores calculated without tolerances labeled as “original”; (ii)
maximum efficiency score obtained which corresponds to the
optimistic scenario labeled as “max”; (iii) minimum efficiency
scores which corresponds to the pessimistic scenario labeled as
“min” and; (iv) mean efficiency score of the 81 combinations with
tolerances labeled as “mean”. Table 3 shows the efficiency scores
for the 23Chilean WaSCs evaluated for the 4 scenarios. Moreover,
information on the amplitude of the range (max-min) and
(original-mean) is also reported.

As is shown in Table 3, 6 out of 23 WaSCs (26%) are efficient
when scores are computed using original data. This means that
these water companies cannot reduce the use of inputs keeping the
production of outputs if they are compared with the other
evaluated WaSCs. Hence, these 6 WaSCs comprise the benchmark
of the best practice. This figure is consistent with the results
reported by Molinos-Senante et al. (2015a) who concluded that for
2012, 28% of the Chilean WaSCs were efficient. Nevertheless, it
should be considered that they used other variables as outputs
including undesirable outputs. The large standard deviation of the
estimated efficiency scores should be highlighted. As a result of the
large disparity in efficiency scores across the evaluated water
companies, the mean efficiency score of the sample of WaSCs is
0.527. This finding implies that the potential for input saving
among WaSCs is about 47.3%.

Under the most optimistic scenario (max), the average
efficiency score of WaSCs could potentially reach 0.581 which
means that there could be an improvement in efficiency of
approximately of 41.9%. Moreover, under this most favorable
scenario, 9 out of 23 WaSCs (39%) are identified as efficient. This
means that there are three water companies which are efficient in
the optimistic scenario but not in the original one. These WaSCs are
the closest ones to currently be efficient since in the best-case
scenario they become efficient. By contrast, 13 out of 23 WaSCs
(56%) would not become efficient, even in the optimistic scenario.

If the pessimistic scenario is analyzed, only 1 out of 23 WaSCs is
efficient. It should be highlighted that 5 of the 6 water companies



Table 3
Efficiency scores for the 23 main Chilean water and sewerage companies accounting
for uncertainty.

WaSC Original Max Min Mean Max-min
(%)

Original-Mean (%)

1 0.3613 0.3676 0.1211 0.2803 24.6 8.1
2 1.0000 1.0000 0.3748 0.8632 62.5 13.7
3 0.7861 1.0000 0.2785 0.6741 72.1 11.2
4 0.1769 0.1852 0.0586 0.1392 12.7 3.8
5 0.1380 0.1415 0.0428 0.1058 9.9 3.2
6 1.0000 1.0000 0.3316 0.8134 66.8 18.7
7 0.2136 0.2455 0.0708 0.1730 17.5 4.1
8 0.1612 0.1687 0.0528 0.1264 11.6 3.5
9 0.5177 0.8998 0.1606 0.4905 73.9 2.7
10 1.0000 1.0000 0.3791 0.8649 62.1 13.5
11 1.0000 1.0000 0.5622 0.9041 43.8 9.6
12 0.6082 1.0000 0.1934 0.5920 80.7 1.6
13 1.0000 1.0000 0.3462 0.8559 65.4 14.4
14 0.9497 1.0000 0.3064 0.8307 69.4 11.9
15 1.0000 1.0000 1.0000 1.0000 0.0 0.0
16 0.2430 0.2522 0.0612 0.1777 19.1 6.5
17 0.4100 0.4250 0.0980 0.2940 32.7 11.6
18 0.1369 0.1534 0.0387 0.1080 11.5 2.9
19 0.1707 0.1722 0.0349 0.1188 13.7 5.2
20 0.3200 0.3310 0.0800 0.2321 25.1 8.8
21 0.3958 0.4333 0.0815 0.2874 35.2 10.8
22 0.1866 0.2277 0.0526 0.1212 17.5 3.5
23 0.3478 0.3520 0.0780 0.2438 27.4 10.4
Average 0.5271 0.5807 0.2089 0.4490 37.2 7.8
SD 0.3510 0.3756 0.2263 0.3248 25.8 4.9
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that were efficient based on the original data are no longer efficient
in the worst-case scenario. Here, it is worth noting that only WaSC
number 15 is efficient in the four scenarios. Likewise, it is also
important to note the significant decrease in the average efficiency
due to the fact that some water companies reduced their efficiency
score to less than 0.1. These changes mean that these water
companies should be on alert, as if there are small changes in the
use of inputs or in the generation of outputs, including quality
issues, its efficiency will be greatly negatively affected.

As in the pessimistic scenario, in the mean scenario, only one
WaSCs was efficient. This means that this water company is
efficient in the 81 DEA combinations. Moreover, the average
efficiency for the mean scenario is 0.449 which is similar to the
efficiency scores computed with the original data. However,
Table 3 shows that the maximum amplitude between the original
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Fig. 1. Efficiency scores with tolerances: ma
and mean scores is 18.7%, while the lowest amplitude is 0.0%. These
findings mean that when the efficiency of the water industry is
evaluated as a whole, the mean value obtained considering
uncertainty (81 scenarios) is similar to the one obtained with the
original data. However, when the assessment focuses on water
company level, accounting for uncertainty acquires special
relevance since for some WaSCs there are large differences
between the results from original data and from the mean of
the 81 scenarios.

Fig. 1 illustrates the variation intervals between the optimistic
and pessimistic scenarios of WaSCs efficiency scores, as well as the
scores when the original values of inputs and outputs were
employed. The different length of the bars denotes the stability
level in the obtained results. Thus, a large amplitude implies that
the performance of a water company may improve or worsen
significantly when its inputs and/or outputs change. By contrast,
low amplitude means that the efficiency will change minimally
despite variations in the level of inputs and/or outputs. Fig. 1
evidences that there is only one water company that would be
efficient in an uncertain context. Moreover, there is another group
of WaSCs characterized by low variability, i.e., their amplitudes are
small. However, these water companies exhibit low efficiency
scores even in the best-case scenario. Hence, they can be
considered as “insensitive” water companies in the sense that
their performance is little affected by the uncertainty in the data.
For the Chilean water industry, the mean amplitude between the
optimistic and pessimistic scenarios is 37%. However, water
companies are not a homogeneous group. Thus, of the assessed
WaSCs, results indicate that 9 out of 23 water companies (39%)
exhibit amplitudes larger than 40%, reaching a maximum value of
81%. In contrast, the same percentage of WaSCs, i.e., 39%, have
amplitudes lower than 20%.

4.3. Using performance indicators for ranking water and sewerage
companies

To rank WaSCs according its performance, the indicators R1
k0 and

R2
k0 were computed based on the previously estimated efficiency

scores (Boscá et al., 2011). The values of both indicators are shown
in Table 4. Results illustrate that WaSC 15 occupies the first place in
the ranking since it presents the best performance when
uncertainty is introduced in the efficiency assessment. It should
21 17 9 12 3 14 15 11 10 2 13 6

WaSCAX MI N

ximum, original and minimum scores.



Table 4
Ranking of water and sewerage companies based on efficiency scores.

WaSC R1
k0 R2

k0

15 1.000 –

11 0.778 0.568
10 0.778 0.392
2 0.778 0.385

13 0.778 0.351
6 0.667 0.440

14 0.333 0.746
3 0.222 0.581

12 0.222 0.475
9 0.000 0.491
1 0.000 0.280
7 0.000 0.173

22 0.000 0.151
4 0.000 0.139
8 0.000 0.126

18 0.000 0.108
5 0.000 0.106

21 0.000 0.029
16 0.000 0.018
19 0.000 0.012
17 0.000 0.003
23 0.000 0.002
20 0.000 0.002
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be noted that when efficiency was evaluated using original data
(Table 3) 6 out of 23 WaSCs had an efficiency score equal to one, i.e.,
they were identified as efficient. Hence, it was not possible to
identify which of the 6 WaSCs had the best performance. The
estimation of the indicator R1

k0 allowed us to overcome such
limitation and identify undoubtedly which is the WaSC with the
best performance. According to R1

k0 values, the subsequent
positions in the ranking are occupied by WaSCs 2, 10, 11 and 13
which have the same value. These WaSCs were efficient in the
original and optimistic scenarios. However, in the pessimistic

scenario they were inefficient and therefore its R1
k0 value is lower

than the unity. Moreover, results R1
k0 confirms that 14 out of 23

WaSCs could never become efficient even in the optimistic

scenario since its R1
k0 value equals to zero.

The results of the R2
k0 indicator enabled ranking WaSCs that have

the same value of R1
k0 .

In particular, as illustrated in Table 4, R2
k0 values allowed for the

ranking of WaSCs 2, 10, 11 and 13 whose R1
k0 values were the same.

In other words, R2
k0 values are useful to rank WaSCs that with the

original data were identified as efficient but have different

performance in the pessimistic scenario. Moreover, R2
k0 values

allowed us to rank the WaSCs which exhibit a R1
k0 value equal to

zero, i.e., WaSCs that even in the optimistic scenario would not
become efficient. WaSC 9 occupies the highest position in the
ranking, while, WaSC 20 would be the less efficient water company,
even in the optimistic scenario.

The ranking of WaSCs is of great interest for water regulators
since it allows for the comparison of the performance of water
companies facing the same regulatory framework. This issue is
especially important in countries or regions in which the process to
set water tariffs is based on benchmarking processes. Thus, water
regulators are provided with more complete and reliable
information for the decision-making process when water tariffs
are set considering rewards or penalizations for WaSCs.
5. Conclusions

In recent years, interest in assessing the efficiency of water
companies has increased since it has proven to be a useful tool for
water company managers and water regulators. From a methodo-
logical point of view, to estimate the efficiency scores several
approaches can be applied. However, the literature illustrates that
the DEA method is the most widely used method to evaluate the
efficiency of water companies. While this approach presents many
positive features, its deterministic nature is its major drawback
since statistical inferences cannot be drawn from conventional
DEA. In other words, to estimate efficiency scores, DEA does not
account for uncertainty in the data.

To overcome such limitation, this paper for the first time
evaluates the efficiency of a sample of WaSCs using a DEA model
accounting for uncertainty by introducing statistical tolerances in
the data. They are based on historical data and represent the
potential variability in the inputs and outputs. By applying this
approach, 81 efficiency scores for each WaSC are estimated rather
than a single score as with conventional DEA models. This allows
water companies to analyze its efficiency under an optimistic and
pessimistic scenario. We used estimated efficiency scores to rank
the WaSCS with respect to their efficiency accounting for
uncertainty.

The results for a sample of 23 Chilean WaSCs provide the
following primary results: (i) tolerance values for outputs are
larger than for inputs. In particular, the quality-adjusted wastewa-
ter treatment output is the variable which exhibits the greatest
uncertainty. Tolerance values also evidence the different efforts
made by the Chilean WaSCs to improve water and sewerage
services; (ii) using original data, 6 WaSCs were identified as
efficient while this figure increases to 9 water companies under the
optimistic scenario and it is reduced to 1 WaSC in the pessimistic
scenario; and (iii) the ranking of the WaSCs illustrates that there is
only one WaSC which is identified as efficient in the 81 scenarios
evaluated and therefore, it occupies the first position in the ranking
of the Chilean WaSCs.

From a policy perspective, several implications can be drawn
from the methodology and results of this study. First, in the
efficiency assessment of WaSCs it is essential to account for
uncertainty in the data. Otherwise, biased results might be
obtained leading to incorrect conclusions. This paper illustrates
that the DEA model with statistical tolerances is a suitable
methodology to deal with uncertainty in efficiency assessment of
WaSCs. Second, the assessment of efficiency under an optimistic
and a pessimistic scenario allows for the identification of WaSCs
whose efficiency might change significantly under small changes
in the inputs and/or outputs (including quality issues). Third, the
ranking of the WaSCs provides essential information to water
regulators to design and implement policies and to promote
competition between water companies. This issue is vital to
enhance efficiency and innovation in water industries which
provide water and sewerage services under a natural monopoly
regimen. The ranking of the WaSCs, based on efficiency scores,
provides water regulators with improved data to make informed
decisions in the process of water tariff setting.
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